IN-SILICO INVESTIGATION OF PERIPROSTHETIC FRACTURES: ROLE OF THE BODY MASS INDEX

Özgür Cebeci^a, Prof. Sara Checa^b, Prof. Duane Cronin^c

^a IAT Ingenieurgesellschaft für Automobiltechnik mbH

^b Julius Wolff Institute, Berlin Institute of Health, Charité – Universitätsmedizin Berlin

^c Department of Mechanical Engineering, University of Waterloo

14th Congress of Endoprosthetics

February 25 - 27, 2021

IAT Ingenieurgesellschaft für Automobiltechnik mbH

Impact Mechanics and Material Characterization Group

IN-SILICO INVESTIGATION OF PERIPROSTHETIC FRACTURES: ROLE OF THE BODY MASS INDEX

Introduction

- Periprosthetic femur fractures (PFFs) are the third most common reason for
 revision surgeries.
 revision surgeries.
- Mostly due to low energy falls and physiological load cases like stumbling
- The influence of body mass index (BMI) in PFFs is discussed in several studies with contradicting results.

Methods

Implanted femur models:

- Two femurs for BMI values of 20 and 32 (T-score: -1.8 and -1.4, respectively).
- A generic tapered stem was implanted following surgical procedures.

Load cases:

Lateral falls: Proximal femur reaction forces were measured with HBM simulations (Cebeci, 2020).

Stumbling: Hip joint reaction forces (Orthoload-Database) were applied along with the hip muscle contractions.

Results

- Fall induced early postoperative PFF risk is negatively corelated with BMI.
- Early postoperative PFF risk under stumbling loads increase with BMI.

Discussion

- No overall increase in early postoperative fracture risk due to the increased BMI.
- BMI and load case specific fractures risks were identified
- Developing patent specific fracture prevention strategies
- Future work: Influence of stem design

QUESTIONS AND CONTACT

THANKS FOR YOUR ATTENTION

Özgür Cebeci

IAT Ingenieurgesellschaft für Automobiltechnik mbH

Tel: +4917623127128 E-Mail: oezguer.cebeci@iatmbh.com Website: http://www.iatmbh.com

IAT Ingenieurgesellschaft für Automobiltechnik mbH

Impact Mechanics and Material Characterization Group

